Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=192
х=√64×3
х=8√3см; ВС=8√3; АС=8√3×2=16√3см
Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
ответ: КС=16см
Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=192
х=√64×3
х=8√3см; ВС=8√3; АС=8√3×2=16√3см
Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²
(2х)²-х²=(8√3)²
4х²-х²=64×3
3х²=192
х²=192÷3
х²=64
х=√64
х=8; итак: ВК=8см, тогда КС=8×2=16см
КС=16см
Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3.
-------
Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ.
Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей.
Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ.
АС и ВС - секущие при параллельных прямых, отсюда
треугольники А1СВ1 и АСВ - подобны.
Из их подобия следует отношение
А1В1:АВ=2:3
А1В1:15=2:3
3 А1В1=30
А1В1=10 см