Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Сначала найдем ∠С= 180 - ∠A - ∠B= 180-23°10’- 41°15’= 116°35’ По теореме синусов : а/sin A= b/sin B= c/ sin C Отсюда: a/ sin 23°10’= 10/ sin 116°35’ (значения синусов можно узнать из таблицы Брадиса или посчитать на калькуляторе) а= (0,39/0,894)*10 = 0,436*10 = 4,36 = 4,4 По аналогичной схеме найдите b.
Чтобы найти cos необходимо воспользоваться теоремой косинусов: AB^2=BC^2+CA^2 - 2BC*CA*cos∠C (квадрат стороны равен сумме квадратов двух других сторон ) Отсюда: cos∠C= (BC^2+CA^2 - AC^2)/(2*BC*CA)
По предыдущей формуле найдите стороны, после рассчитайте косинусы углов, которые нужно найти.
Аксиома 1
Через две точки можно провести прямую линию и притом только одну.
Аксиома 2
Если две точки прямой принадлежат плоскости, то и каждая точка этой прямой принадлежит плоскости.
Аксиома 3
Отрезок прямой короче всякой другой линии (ломаной или кривой), соединяющей его концы.
Расстояние между двумя точками измеряется по прямой линии. В геометрии используются еще и такие аксиомы, которые уже применялись в арифметике и алгебре (сформулируем их для произвольных величин A, B и C):
Аксиома 4
Если A=B и B=C, то A=C.
Аксиома 5
Если A=B, то A+C=B+C и A-C=B-C.
Объяснение:
здесь ответы
По теореме синусов : а/sin A= b/sin B= c/ sin C
Отсюда: a/ sin 23°10’= 10/ sin 116°35’ (значения синусов можно узнать из таблицы Брадиса или посчитать на калькуляторе)
а= (0,39/0,894)*10 = 0,436*10 = 4,36 = 4,4
По аналогичной схеме найдите b.
Чтобы найти cos необходимо воспользоваться теоремой косинусов:
AB^2=BC^2+CA^2 - 2BC*CA*cos∠C (квадрат стороны равен сумме квадратов двух других сторон )
Отсюда: cos∠C= (BC^2+CA^2 - AC^2)/(2*BC*CA)
По предыдущей формуле найдите стороны, после рассчитайте косинусы углов, которые нужно найти.