2.Осевое сечение цилиндра- квадрат, площадь которого равна 16см (в квадрате). Чему равна пощадь основания цилиндра? 3.В каком случае сечение цилиндра плоскостью, параллельной его оси, является квадрат? 4.Сколько существует плоскостей, рассекающий данный цилиндр: а) на два равных цилиндра; б) на две равные фигуры?
КОНУС. 1.Может ли в сечении конуса плоскостью получиться равнобедренный треугольник, отличный от осевого сечения? 2.Радиус основания конуса равен 4см. осевым сечение служит прямоугольный треугольник. Найдите его площадь? 3..Высота конуса 8м, радиус основания - 6м. Найдите образующую конуса. 5.Образующая конуса равна 6м и наклонена к плоскости основания под углом 60 градусов. найдите площадь основания конуса.
3.В каком случае сечение цилиндра плоскостью, параллельной его оси, является квадрат?
4.Сколько существует плоскостей, рассекающий данный цилиндр:
а) на два равных цилиндра;
б) на две равные фигуры?
КОНУС.
1.Может ли в сечении конуса плоскостью получиться равнобедренный треугольник, отличный от осевого сечения?
2.Радиус основания конуса равен 4см. осевым сечение служит прямоугольный треугольник. Найдите его площадь?
3..Высота конуса 8м, радиус основания - 6м. Найдите образующую конуса.
5.Образующая конуса равна 6м и наклонена к плоскости основания под углом 60 градусов. найдите площадь основания конуса.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².