1)Пусть АВСД - данный параллелограмм, угол А-тупой, ВН -высота. АН=2 см, НД=8см. Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см. В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов. В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).
При пересечении двух прямых можно
получить 4 равных угла по 90°, если
прямые перпендикулярны,либо две
пары вертикальных углов.
Если прямые перпендикулярны,
то сумма любых двух углов будет
равна 90°+90°=180°. То есть меньше,
чем 296°. Значит прямые не
перпендикулярны.
При пересечении двух прямых
образовано две пары вертикальных
углов : 2 острых угла и 2 тупых угла.
/_1 =/_3 < 90°; /_2 = /_4> 90°
Сумма двух острых углов меньше 180°
<296°.
Сумма острого и тупого углов равна
180°,
Значит, 296° в сумме можно получить,
только сложив тупые углы.
/_2 + /_4 =296°
/_2 = /_4 =296° : 2=148°
Острые углы смежные с тупыми :
/_1 = /_3 =180° - 148° = 32°
ответ: 32°, 148°, 32°, 148°
Площадь параллелограмм равна произведению высоты на основание, то есть S=ВН*АД, откуда ВН=S/АД, ВН=20/10=2 см.
В треугольнике АВН угол АНИ равен 90 градусов, АН=ВН=2, следовательно данный треугольник прямоугольный и равнобедренный и угол НАВ=углу АВН=90/2= 45 градусов.
В параллелограмме АВСД угол А=углуС=45 градусов, а угол В=углу Д= (360-2*45)=270/2=135 градусов
2)По теореме об отношении площадей треугольников, имеющих один равный угол площадь АСВ/площади АВД=(АВ*АС) /АВ*АД. (записать в виде дроби) , SАВС/SАВД=АС/АД, откуда SАВД=SАВС*АД/АС=36*6/1= 6 квадратных см. (так как по условию задачи АД/ДС как 1/5, то АС/.АД=6/1).