У прямокутному трикутнику гіпотенуза дорівнює 20 см, а кут між бісектрисою і медіаною, які проведено з вершини прямого кута 15°.Знайти катети трикутника
В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
1) L = 6√2 (см) ≈ 8,5 см; 2) А = 2√37 (см) ≈ 12,2 см
Объяснение:
1.
H = 8 см - высота пирамиды
а = 6 см - сторона основания
L - ? - длина бокового ребра пирамиды
-----------------------------------------------------------
Смотри прикреплённый рисунок
h = 0.5 a √3 = 0.5 · 6 · √3 = 3√3 (см) - высота треугольного основания
L пр = 2h/3 = 2 · 3√3 / 3 = 2√3 (см) - проекция ребра на основание пирамиды
Ребро L, высота пирамиды Н и проекция пирамиды на основание Lпр образуют прямоугольный треугольник с гипотенузой L.
По теореме Пифагора
L² = H² + L²пр = 8² + (2√3)² = 64 + 12 = 72
L = √72 = 6√2 (см) ≈ 8,5 см
2.
Н = 12 см - высота пирамиды
d = 4√2 см - диагональ квадратного основания пирамиды
А - ? - апофема пирамиды
-----------------------------------------------------------
Смотри прикреплённый рисунок
0,5а = 0,5d · cos 45° = 0.5 · 4√2 : √2 = 2 (см) - половина стороны квадратного основания пирамиды
Апофема А, высота Н пирамиды и половина стороны основания 0,5а образуют прямоугольный треугольник с гипотенузой А.
По теореме Пифагора
А² = Н² + (0,5а)² = 12² + 2² = 144 + 4 = 148
А = √148 = 2√37 (см) ≈ 12,2 см
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
2 -2 8 -4 8 8
Длины сторон:
АВ ВС АС
6.32455532 12 11.66190379
Периметр Р = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.
Треугольник АСД
Точка А Точка С Точка Д
Ха Уа Хс Ус Хд Уд
2 -2 8 8 2 10
АС СД АД
11.6619038 6.32455532 12
Периметр Р = 29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.