За властивістю середної лінії сторона трикутника проти якої лежить середня лінія у два рази більша ніж середня лінія, тоді сторони трикутника відносяться як 6 : 10 : 14.Введемо коефіціент пропорційності x і складемо рівняння, так як сума усіх сторін дорівнює периметру трикутника.Нехай сторони трикутника a,b,c і нехай a = 6x, b = 10x, c = 14x.
P трикутника = a + b + c
30 = 6x + 10x + 14x
30 = 30x; x = 1
Отже сторони трикутника a = 6 * 1 = 6, b = 10 * 1 = 10, c = 14 * 1 = 14
Сторони трикутника 6;10;14
Объяснение:
За властивістю середної лінії сторона трикутника проти якої лежить середня лінія у два рази більша ніж середня лінія, тоді сторони трикутника відносяться як 6 : 10 : 14.Введемо коефіціент пропорційності x і складемо рівняння, так як сума усіх сторін дорівнює периметру трикутника.Нехай сторони трикутника a,b,c і нехай a = 6x, b = 10x, c = 14x.
P трикутника = a + b + c
30 = 6x + 10x + 14x
30 = 30x; x = 1
Отже сторони трикутника a = 6 * 1 = 6, b = 10 * 1 = 10, c = 14 * 1 = 14
1.<А=40°
2. 18 см
Объяснение:
1. АВ=CD и BC=AD по условию, сторона BD общая доя двух треуголиников.
Соответственно по третьему признаку равенства треуголиников треугольники ABD и CBD равны
Исходя из этого имеем угол С равен углу А и равен 40°
2. Медиана делит сторону пополам. Исходя из этого получаем: АК=ВК=2 см, ВМ=СМ=3 см и АN=CN=4 см
АВ= АК+ВК=2АК=2*2=4 см
ВС= ВМ+СМ=2ВМ=2*3=6 см
АС= AN+CN=2CN=2*4=8 см
Периметр треугольника АВС=АВ+ВС+АС=4+6+8=18 см
3. Треугольник АВС равнобедренный, значит АВ=ВС. BM=BN по условию задачи. Соответственно получаем, что АМ=СN.
BD Медиана, значит получаем что АD=CD.
Так как треугольник АВС равнобедренный, соответственно угол А равен углу С.
По первому признаку равенства треугольников получаем, что треугольник MAD равен треугольнику NCD.
Из этого получаем, что MD=ND