У прямокутному трикутнику MAT, ∠A=90°, AH – висота, MT=15,cosM=0,6. Знайдіть MH.
2. Діагоналі ромба дорівнюють 3 і 4. Знайдіть синус кута між більшою діагоналлю і стороною ромба.
3. У рівнобічній трапеції бічна сторона дорівнює 17 см, більша основа дорівнює 19 см, а менша – 3 см. Знайдіть синус і косинус гострого кута трапеції.
4. Знайдіть косинус кута при вершині рівнобедреного трикутника, якщо висота проведена до бічної сторони менша за цю сторону в 3 рази.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.
Центр вписанной в угол ВСД окружности лежит на биссектрисе СР
Центр вписанной в угол СДА окружности лежит на биссектрисе ДР
Т.к. точка Р для биссектрис углов ВСД и СДА общая - она является центром вписанной в оба угла окружности.
Расстояние от центра вписанной в угол окружности до его сторон равно ее радиусу. Расстояние из Р до прямых ВС, СД, АД - перпендикуляр и равно радиусу этой окружности.
Вариант решения:
Расстояние от точки до прямой - отрезок, проведенный к ней перпендикулярно.
ОК, ОМ, ОН - перпендикуляры к прямым ВС, СD, AD соответственной.
Прямоугольные ∆ СКО=∆СМО по равному острому углу при С и общей гипотенузе ОС. ⇒
КО=ОМ
Прямоугольные ∆ НОD=∆ MOD по равному острому углу при D и общей гипотенузе OD. ⇒
НО=ОМ
КО=ОМ, НО=ОМ⇒
КО=ОН=ОМ, что и требовалось доказать.
1. Т.к. ∠OGA=∠OFA=∠OHA=90°, то все точки A,G,O,F,H лежат на одной окружности с диаметром AO.
2. Треугольник ABC подобен треугольнику HFG т.к. ∠GAF=∠GHF и ∠FGH=∠FAH=∠BCA по свойству вписанных углов.
3. L - центр окружности вписанной в HFG, т.к.:
a) ∠OHF=∠OHG (опираются на равные хорды),
б)∠GFL=∠OFL-∠OFG=(90°-∠FOL/2)-∠OFG=(90°-∠FAH/2)-∠OAG, ∠GFH=180°-2∠OAG-∠FAH, т.е. ∠GFL=∠GFH/2.
Из а) и б) следует, что L - точка пересечения биссектрис треугольника HFG.
4. Из 2 и 3 следует, что в треугольнике ABC отрезку AO соответствует отрезок HL, т.е. коэффициент подобия ABC относительно HFG равен AO/HL=AO/(OH-OL)=25/(13-7)=25/6. Отсюда BC=GF*25/6.
5. Из прямоугольного треугольника AOF получаем NF/OF=AF/AO, т.е. GF=2NF=2OF·AF/AO=(14√(25²-7²))/25=336/25. Тогда из 4 видим, что
BC=(336/25)·(25/6)=56.
6. Высота параллелограмма ABCD равна EO+OH=7+13=20. Значит, площадь равна 20·BC=20*56=1120.
P.S. Есть ощущение, что BC можно и проще найти, но... :))