Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
угол КВО=45°
Объяснение:
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД, точку их пересечения О, а перпендикуляр ВК, пропорции углов обозначим х и 3х и, так как сумма этих двух углов составляет 90°, составим уравнение:
х+3х=90
4х=90
х=90÷4
х=22,5.
Итак: угол АВК=22,5°, тогда угол КВС=22,5×3=67,5°.
Рассмотрим полученный ∆АВК. Он прямоугольный, угол АВК=22,5°, а так как сумма острых углов прямоугольного треугольника составляет 90°, то угол ВАК=90-22,5=67,5°.
Рассмотрим ∆АВО. Он равнобедренный, поскольку диагонали прямоугольника пересекаясь делятся пополам, поэтому АО=ВО, а АВ- его основание и углы при основании равны:
уголВАО=углу АВО=67,5°. Угол ВАО в ∆АВО и угол ВАК в ∆АВК является общим и равен 67,5°. Тогда угол КВО=67,5-22,5=45°