Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
У завданнях 1-6 виберіть правильну відповідь.
1. Яке з наведених висловлювань має такий самий зміст, що і висловлювання «Площини α і β мають спільну точку А»?
A. Площини α і β не мають інших спільних точок, крім точки A.
Б. Площини а і β можуть мати ще тільки одну спільну точку.
B. Площини α і β перетинаються по прямій, що проходить через точку A.
Г. Площини α і β перетинаються, і лінією їхнього перетину є відрізок із серединою в точці A.
2. Через яку з наведених фігур можна провести більше ніж одну площину?
A. Кінці однієї діагоналі паралелограма і середину іншої діагоналі.
Б. Діаметр кола і точку цього кола, що не належить діаметру.
B. Сторони кута, що не є розгорнутим.
Г. Середини всіх сторін трикутника.
3. Трапеція ABCD (BC і AD — основи трапеції) і ромб BCEF не лежать в одній площині. Які з наведених прямих є мимобіжними?
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20