Т.к. OK ║ AD, а AD ║ BC ⇒ OK ║ BC
Точка O - центр пересечения диагоналей параллелограмма делит их пополам ⇒ OK средняя линия ΔBCD.
BC = 2 * OK = 2 * 6 = 12 см
В прямоугольном ΔBCD ∠CBD = 90° - ∠BCD = 90° - 60° = 30°.
Против угла в 30° лежит половина гипотенузы ⇒ CD = BC / 2 = 12 / 2 = 6.
В прямоугольном ΔBCD по теореме Пифагора найдем:
Площадь прямоугольного ΔBCD найдем как полупроизведение катетов:
Т.к. диагональ BD делит параллелограмм на два равных треугольника, то:
ответ: площадь параллелограмма равна 36√3 см2
ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
Значит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см
Т.к. OK ║ AD, а AD ║ BC ⇒ OK ║ BC
Точка O - центр пересечения диагоналей параллелограмма делит их пополам ⇒ OK средняя линия ΔBCD.
BC = 2 * OK = 2 * 6 = 12 см
В прямоугольном ΔBCD ∠CBD = 90° - ∠BCD = 90° - 60° = 30°.
Против угла в 30° лежит половина гипотенузы ⇒ CD = BC / 2 = 12 / 2 = 6.
В прямоугольном ΔBCD по теореме Пифагора найдем:
Площадь прямоугольного ΔBCD найдем как полупроизведение катетов:
Т.к. диагональ BD делит параллелограмм на два равных треугольника, то:
ответ: площадь параллелограмма равна 36√3 см2
ΔABE - равнобедренный ⇒ Опустим из точки В на основание АЕ высоту ВН ⇒ АН = НЕ = AE/2 = 8 см.
Высота равнобедренного треугольника, проведенная к его основанию, является медианой и биссектрисой.
CB⊥α ⇒ CB⊥(ABE)
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости.
CB⊥AB, CB⊥BE, CB⊥AE, CB⊥BH
ΔCBA = ΔCBE по двум катетам:
СВ - общая сторонаАВ = ВЕ - из равнобедренного ΔАВЕЗначит, АС = СЕ ⇒ ΔАСЕ - равнобедренный.
В ΔАСЕ опустим из точки С на основание АЕ высоту. Высота должна пройти через середину АЕ, то есть через точку Н.
Следовательно, расстояние от точки C до стороны треугольника AE равно СН, ρ (С;АЕ) = СН - искомое расстояние.
В ΔАВН (∠ВНА = 90°): По теореме Пифагора
АВ² = ВН² + АН²
ВН² = АВ² - АН² = 10² - 8² = 100 - 64 = 36
ВН = 6 см
В ΔСВН (∠СВН = 90°): По теореме Пифагора
СН² = СВ² + ВН² = 4² + 6² = 16 + 36 = 52
Значит, СН = √52 = 2√13 см.
ответ: 2√13 см