1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
1. 5 ед.
2. а√3 ед
Объяснение:
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
1. ΔBAD=ΔDCB - прямоугольные (по условию), равны по катету AB=CD и гипотенузе BD - общая сторона.
2. ΔКТМ=ΔКТN - прямоугольные (по условию), равны по двум катетам MT=TN (по условию), KT - общий катет.
3. ΔPKS=ΔRKS - прямоугольные, так как ∠PKS=∠RKS (по условию) - смежные, значит ∠PKS=∠RKS=90°. Треугольники равны по общему катету KS и острому углу ∠KPS=∠KRS (по условию).
4. ΔERF=ΔESF - прямоугольные (по условию), равны по общей гипотенузе EF и острому углу ∠REF=∠SEF (по условию).
5. ΔSPM=ΔTKM - прямоугольные (по условию), равны по катету SP=KT (по условию) и гипотенузе SM=TM (по условию).
ΔRPM=ΔRKM - прямоугольные, равны по катету РМ=КМ (из равенства ΔSPM=ΔTKM) и общей гипотенузе RM.
Подробнее - на -
Объяснение: