Всего бочек 21, значит каждому купцу в сумме должно достаться по 7 бочек
Теперь делим сам мёд:
Пусть половина бочки это одна доля. Тогда в полных бочках содержится 14 долей, а в полупустых 7 долей, всего 21 доля, из которых каждому купцу должно достаться по 7 долей. Исходя из этого, бочки следует распределить следующим образом:
Исследуемый четырехугольник - трапеция, подобная данной. Площади подобных фигур относятся друг к другу как квадраты их линейных размеров.
Высота данной трапеции равна sqrt[((24 - 12)/2)^2 + 10^2] = 8.
Площадь данной трапеции равна (12 + 24)*8/2 = 144.
Радиусы вписанных окружностей равны 1, в высоте их вмещается два. Следовательно, высота искомой трапеции равна 8 - 1 - 1 = 6. Высоты этих трапеций относятся как 6/8 = 3/4. Значит, площади трапеций будут относиться друг к другу как 9/16.
И площадь искомого четырехугольника будет равна 144*9/16 = 81.
Всего бочек 21, значит каждому купцу в сумме должно достаться по 7 бочек
Теперь делим сам мёд:
Пусть половина бочки это одна доля. Тогда в полных бочках содержится 14 долей, а в полупустых 7 долей, всего 21 доля, из которых каждому купцу должно достаться по 7 долей. Исходя из этого, бочки следует распределить следующим образом:
1 купец: 3 полных бочки, 1 полупустая, 3 пустых. Всего бочек - 7, мёда - 3,5 бочки.
2 купец: 2 полных бочки, 3 полупустых, 2 пустых. Всего бочек - 7, мёда - 3,5 бочки.
3 купец: 2 полных бочки, 3 полупустых, 2 пустых. Всего бочек - 7, мёда - 3,5 бочки.
Исследуемый четырехугольник - трапеция, подобная данной. Площади подобных фигур относятся друг к другу как квадраты их линейных размеров.
Высота данной трапеции равна sqrt[((24 - 12)/2)^2 + 10^2] = 8.
Площадь данной трапеции равна (12 + 24)*8/2 = 144.
Радиусы вписанных окружностей равны 1, в высоте их вмещается два. Следовательно, высота искомой трапеции равна 8 - 1 - 1 = 6. Высоты этих трапеций относятся как 6/8 = 3/4. Значит, площади трапеций будут относиться друг к другу как 9/16.
И площадь искомого четырехугольника будет равна 144*9/16 = 81.
ответ: 81.