1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения: R=3/cos 18=3/0.95=3.15 (см). Найдем сторону фигуры: a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см) ответ: 1.89 см. 2) Найдем R: R = r/cos 180/n=5/√3/2=10√3/3 (см) Длина стороны равна R, следовательно a=R=10√3/3, значит, P = 6a=10√3/3*6=20√3 (cм) или 34.64 см. ответ: 20√3 см или 34.64 см. 3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см). ответ: 30 см.
1. Да, луч с проходит между сторонами угла ab.
2. ∠bc = 15°. ∠ac = 45°.
Объяснение:
1. В условии описка. Так как точка d не определена, считаем что условие такое:
Может ли луч с проходить между сторонами угла (ab) если 1) угол(ас)= 30 градусов,угол (аb)= 80 градусов, угол(cb) =50 градусов?
Угол ab равен 80 градусов и состоит из двух углов: ас и bc (так как луч с проходит внутри угла ab).
∠ac +∠cb = 30° + 50° = 80° => да, луч "с" проходит между сторонами угла ab.
2. Угол ab равен 60° с состоит из двух углов: ac и bc, при чем
∠ac =∠bc + 30°. Тогда
∠ab = ∠ac + ∠bc = ∠bc+30° + ∠bc = 60°.
2·∠bc = 60°-30°=30°. => ∠bc = 15° => ∠ac = 45°.
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.