У рівнобедреної трапеції ABCD через вершину B проведено пряму, яка паралельна стороні CD і перетинає сторону AD в точці N. Периметр трикутника ABN дорівнює 30 см, CB дорівнює 6 см. Обчисли периметр трапеції ABCD.
9)Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH). Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x, то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.). Из прямоугольного треугольника BDH по теореме Пифагора находим BH: BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2). ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые. Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.). Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH: DH=√DC^-HC^2=6 (см.). Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.). ответ: 54
Укажите номера верных утверждений : 1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой. Верно. Аксиома планиметрии 9: через точку, не лежащую на данной прямой можно провести на плоскости не более одной прямой, параллельной данной. 2) Треугольник со сторонами 1,2,4 существует Неверно. Длина каждой стороны треугольника не может быть больше или равна сумме двух других. 4>1+2 (неравенство треугольника) 3) Если в ромбе один из углов равен 90 гр, то такой ромб - квадрат
Верно. Сумма углов четырехугольника 360°. Ромб - параллелограмм, все стороны которого равны. Противоположные углы ромба равны. Если один угол равен 90°, противоположный равен 90°. Два других равны 90°. Квадрат - параллелограмм, все стороны которого равны (ромб) и все углы прямые (прямоугольник).
Проведем высоту DH ,тогда разностью оснований трапеции будет отрезок HC(так как AD=BH).
Обозначим AB как 4x , тогда DC 5x - (по условию).Из прямоугольного треугольника
DHC по теореме Пифагора отрезок HC равен √25x^2-16x^2= 3x,
то есть BC-AD=18=3x,откуда x=6, DC=5x=30(см.),AB=DH=4x=24(см.).
Из прямоугольного треугольника BDH по теореме Пифагора находим BH:
BH=√26^2-24^2=10(см.), основание BC равно HC+BH=28(см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH= (28+10)/2*24=456 (см^2).
ответ: 456
5) Пусть дана трапеция ABCD, углы BAD и ABC - прямые.
Проведем высоту DH,тогда отрезок HC=BC-AD=8 (см.).
Из прямоугольного треугольника DHC найдем по теореме Пифагора высоту DH:
DH=√DC^-HC^2=6 (см.).
Площадь трапеции S(ABCD)=(AD+BC)/2*DH=(5+13)/2*6=54(см^2.).
ответ: 54
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
Верно. Аксиома планиметрии 9: через точку, не лежащую на данной прямой можно провести на плоскости не более одной прямой, параллельной данной.
2) Треугольник со сторонами 1,2,4 существует
Неверно. Длина каждой стороны треугольника не может быть больше или равна сумме двух других. 4>1+2 (неравенство треугольника)
3) Если в ромбе один из углов равен 90 гр, то такой ромб - квадрат
Верно. Сумма углов четырехугольника 360°. Ромб - параллелограмм, все стороны которого равны. Противоположные углы ромба равны. Если один угол равен 90°, противоположный равен 90°. Два других равны 90°. Квадрат - параллелограмм, все стороны которого равны (ромб) и все углы прямые (прямоугольник).