У рівнобедреного трикутник вписаного кола, якщо ділить бічну сторону у відношення 2 : 3, починаючи від вершини, яка протилежна основі. Знайдіть периметр трикутника, якщо його основа дорівнює 12 см
В равностороннем треугольнике высота является высотой, медианой и биссектрисой. Пусть половина стороны, к которой проведена медиана - х, тогда вся эта сторона ( и две другие - 2х. Высота отсекает прямоугольный треугольник. По т. Пифагора (2х)²=х²+(15√3)² 4х²-х²=225*3 3х²=225*3 х²=225*3/3 х²=225 х=₊⁻√225 х=₊⁻15 х=-15 не удовлетворяет условию задачи Т.к. х - половина стороны, то вся сторона равна 30. Треугольник равносторонний, значит, все стороны равны 30. Периметр - это сумма длин всех сторон Р=30+30+30 Р=90 ответ: 90
20² = 2,5²+х²
x² = 400 - 6,25
х² = 393,75 ⇒ х = = 19,843134833 ≈19,84
/\
/ |\
/ | \
/ | \
/ | \
/ | \
20 / | \ 20
/ | \
/ | \
/ | \
/ | \
/ | \
/----------|---------\
2,5 2,5
(2х)²=х²+(15√3)²
4х²-х²=225*3
3х²=225*3
х²=225*3/3
х²=225
х=₊⁻√225
х=₊⁻15
х=-15 не удовлетворяет условию задачи
Т.к. х - половина стороны, то вся сторона равна 30. Треугольник равносторонний, значит, все стороны равны 30.
Периметр - это сумма длин всех сторон
Р=30+30+30
Р=90
ответ: 90