У рівнобедреному трикутнику ABC з основою AC= 9 cм проведено бісектрису кута ∠ABC Використовуючи другу ознаку рівності трикутників, доведи, що відрізок BD є медіаною, визнач довжину відрізка AD.
Диагонали ромба взаимно перпендикулярны и в точке пересечения делятся пополам. Диагонали ромба разбивают его на 4 равных прямоугольных треугольника с катетами 0,5дм и 3,5 дм Тогда гипотенуза ( сторона ромба) по теореме Пифагора: а²=0,5²+3,5²=0,25+12,25=12,5 а=√(1250/100)=(25/10)·√2=2,5√2 Над диагональю ромба длиной 1 дм расположена диагональ параллелепипеда длиной пропорциональной числу 13, обозначим 13х Тогда высота параллелепипеда по теореме Пифагора H²=(13x)²-1 Над диагональю ромба длиной 7 дм расположена диагональ параллелепипеда длиной пропорциональной числу 37, обозначим 37х Тогда высота параллелепипеда по теореме Пифагора H²=(37x)²-7² Приравниваем правые части (13х)²-1=(37х)²-7² (37х)²-(13х)²=7²-1 (37х-13х)(37х+13х)=48 24х·50х=48 50х²=2 х²=1/25 х=1/5 Значит диагонали параллелепипеда имеют длину (13/5)дм и (37/5) дм, а высота параллелепипеда Н²=(169/25)-1=144/25 Н=12/5 S(полн)=2S(осн)+S(бок)=2·(1/2)·1·7+4·2,5√2·12/5=7+24√2 ответ. 7+24√2 кв. дм
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника с катетами
0,5дм и 3,5 дм
Тогда гипотенуза ( сторона ромба) по теореме Пифагора:
а²=0,5²+3,5²=0,25+12,25=12,5
а=√(1250/100)=(25/10)·√2=2,5√2
Над диагональю ромба длиной 1 дм расположена диагональ параллелепипеда длиной пропорциональной числу 13, обозначим 13х
Тогда высота параллелепипеда по теореме Пифагора
H²=(13x)²-1
Над диагональю ромба длиной 7 дм расположена диагональ параллелепипеда длиной пропорциональной числу 37, обозначим 37х
Тогда высота параллелепипеда по теореме Пифагора
H²=(37x)²-7²
Приравниваем правые части
(13х)²-1=(37х)²-7²
(37х)²-(13х)²=7²-1
(37х-13х)(37х+13х)=48
24х·50х=48
50х²=2
х²=1/25
х=1/5
Значит
диагонали параллелепипеда имеют длину (13/5)дм и (37/5) дм, а высота параллелепипеда
Н²=(169/25)-1=144/25
Н=12/5
S(полн)=2S(осн)+S(бок)=2·(1/2)·1·7+4·2,5√2·12/5=7+24√2
ответ. 7+24√2 кв. дм
1) Сумма внешнего и внутреннего угла многоугольника равна 180° ⇒ следовательно внутренний угол многоугольника равен 180° - 20° = 160°
Величина внутреннего угла правильного многоугольника зависит от количества его сторон n и выражается формулой:
Найдем при каком n угол будет равен 160°:
Т.е. угол в 160° будет у правильного 18-угольника
2) Радиус окружности описанной около правильного треугольника R и сторона a треугольника связаны соотношением:
Подставим заданное значение стороны:
Следовательно, радиус окружности, описанной около этого треугольника равен 6 см
3) Градусная мера всей окружности равна 360°, а радианная мера 2π, следовательно градусная мера дуги равна:
°
а радианная:
Длину дуги найдем как 8/15 от длины окружности:
см