У рівнобедреному трикутнику АВС з основою АС проведено висоту ВD. Знайдіть периметр трикутника АВС, якщо ВD = 7 см, а периметр трикутника АВD дорівнює 34 см) Будь Ласка ть. ів
Сосны, земля и расстряние между верхушками составляют прямоугольную трапецию. где сосны – основания, а земля и расстояние между верхушками – боковые стороны.проведем высоту из вершины тупого угла(верхушка короткой сосны), она разделит прямоугольную трапецию на прямоугольник и прямоугольный треугольник. где высота равна 16метров (расстояние между соснами).если основания трапеции равны 27метров и 15метров, тогда катет прямоугольного треугольника равен высоте трапеции, а второй катет 27 - 15 = 12метроврасстояние между верхушками – боковая сторона трапеции и гипотенуза одновременно.сумма квадратов катетов равно квадрату гипотенузы12² + 16² = 144+256=400√400 = 20метров.
Объяснение:
Дано: Окр.О,R;
MO = L
MB₁, MB₂, A₂A₁ - касательные.
Найти: Р (ΔА₁МА₂)
1. Рассмотрим ΔОМВ₁.
Радиус, проведенный в точку касания, перпендикулярен касательной.⇒ ОВ₁ ⊥ МВ₁ ⇒ ΔОМВ₁ - прямоугольный.
По теореме Пифагора найдем МВ₁ :
2. Отрезки касательных к окружности, проведённые из одной точки, равны.⇒ МВ₁ = МВ₂ =
3. Рассмотрим ΔА₁МА₂
Р (ΔА₁МА₂) = А₂М + МА₁ + А₁А₂
А₁А₂ = А₁С + СА₂
А₂С = А₂В₂ ; СА₁ = А₁В₁ (отрезки касательных)
Тогда:
Р (ΔА₁МА₂) = А₂М + МА₁ + А₁С + СА₂ = А₂М + МА₁ + А₁В₁ + А₂В₂
А₂М + А₂В₂ = МВ₂
МА₁ + А₁В₁ = МВ₁
⇒ Р (ΔА₁МА₂) = МВ₂ + МВ₁ =