У рівнобедреному трикутнику АВС з основою АС вписане коло дотикається сторін АВ, ВС і АС трикутника в точках DЕ і F відповідно. Знайдіть периметр АВС , якщо АF= 5см, ВD=6 см.
Высота BD делит треугольник на два прямоугольных треугольника. Один из полученных прямоугольных треугольников - это ABD. Узнаем значение высоты BD при теоремы Пифогора: (заранее возьмем BD за х) 20^2=16^2+х^2 х=sqrt400-256 х=sqrt144 х=12 Теперь обращаем внимание на второй прямоугольный треугольник. Нам известна гипотенуза и один из катетов, BD, так как он общий. Теперь уже CD возьмём за х. 13^2=12^2+х^2 х=sqrt169-144 х=sqrt25 х=5 АС=AD+CD AC=16+5 АС=21
P.S. 5^2 - 5 в квадрате sqrt25 - корень из 25 (здесь числа были взяты рандомные, чтобы пояснить обозначения)
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
Один из полученных прямоугольных треугольников - это ABD.
Узнаем значение высоты BD при теоремы Пифогора:
(заранее возьмем BD за х)
20^2=16^2+х^2
х=sqrt400-256
х=sqrt144
х=12
Теперь обращаем внимание на второй прямоугольный треугольник. Нам известна гипотенуза и один из катетов, BD, так как он общий.
Теперь уже CD возьмём за х.
13^2=12^2+х^2
х=sqrt169-144
х=sqrt25
х=5
АС=AD+CD
AC=16+5
АС=21
P.S. 5^2 - 5 в квадрате
sqrt25 - корень из 25 (здесь числа были взяты рандомные, чтобы пояснить обозначения)
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.