У рівнобедреному трикутнику АВС з основою АВ проведено медіани AD і BE. Периметр трикутника АВС дорівнює 110 см, а периметр трикутника АСD на 10 см більший за периметр трикутника АВЕ. Знайдіть основу трикутника. НУЖНО Можно ещё больше объяснений
проведем радиус=оа,ов,ос 2)рассмотрим треуг. АОД,и треуг. ВОС. треуг.АОД т.к. ОА=ОД=радиусу,треуг. ВОС т.к. ОВ=ОС=радиусу 3)треуг. АОД=треуг. ВОС(по 1 признаку равенства треуг.) т.к. ОА=ОС,ОВ=ОД угол АОД=углу ВОС(вертек.) 4)из равенства треуг. следует что АД=ВС, ОК и ОЛ-высота проведенная к сторонам следовательно ОК=ОЛ
По т.Пифагора найдём гипотенузу.
АС=√(BC²+AC²)=√(256+144)=20 см
Высоту BO проще всего найти из площади треугольника.
S=BC•AB/2
S=BO•AC/2 Следовательно,
BC•AB=BO•AC, откуда
BO=BC•AB:AC
BO=16•12:20=9,6 см
-----
Вариант решения ( несколько длиннее) - его алгоритм дан ниже.
1) Находим гипотенузу по т.Пифагора
2) Катет прямоугольного треугольника – среднее пропорциональное между гипотенузой и проекцией этого катета на неё. ⇒
АВ²=АС•АО, ⇒ АО=АВ²:АС Отрезок СО находим вычитанием АО из гипотенузы или тем же что АО.
3) Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу. ⇒
ВО²=СО•АО. Вычисления дадут ту же длину ВО=9,6 см