Как проверить существует ли треугольник с данными сторонами? Это легко, по теореме каждая сторона треугольника должна быть меньше суммы двух других сторон. И так, проверяем 52 должно быть меньше, чем 38+72 и это так, 38 должно быть меньше, чем 72+52 и это так, 72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует. 2) 10 должно быть меньше, чем 115+1203 и это так, 115 должно быть меньше, чем 1203+10 и это так, 1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует. 3) 1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.
1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
52 должно быть меньше, чем 38+72 и это так,
38 должно быть меньше, чем 72+52 и это так,
72 должно быть меньше, чем 38+52 и это так. Вывод:такой треугольник существует.
2)
10 должно быть меньше, чем 115+1203 и это так,
115 должно быть меньше, чем 1203+10 и это так,
1203 должно быть меньше чем 115+10, но это не так. Вывод: такого треугольника не существует.
3)
1003 должно быть меньше, чем 705+276 и это не так. Можно сразу сделать вывод, что данного треугольника не существует.
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17