является квадратом. Точка M – середина ребра AB, точка К –
середина ребра AD. Через прямую МК проведена плоскость, образующая с плоскостью ABC угол альфа и пересекающая три боковых ребра параллелепипеда. Площадь полученного сечения параллелепипеда равна S. Найдите отрезок AB.
..........................
ответ: АВ=4Ѕсоѕα/5=0,8•Ѕ•соѕα
Объяснение: (Подробно)
Сделаем рисунок согласно условию. Построение нужного сечения начнём проведением плоскости BDN (на рисунке вложения она ограничена отрезками голубого цвета), образующей угол α с плоскостью основания данного параллелепипеда (NL перпендикулярна BD, CL - её проекция на НС) . (MK//BD; PE//BN; TE//DN, высота HE|| HL– высоте ∆BDN) .
Пересекающиеся МК и ЕН в плоскости МРЕТК соответственно параллельны пересекающимся прямым BD иLN в плоскости BDN=> плоскости параллельны. Данное по условию сечение - плоскость пятиугольника МРЕТК.
Итак, плоскость МРЕТК образует с плоскостью АВС угол α и пересекает три боковых ребра параллелепипеда.
Диагонали основания – AC=BD=АВ:sin45°=АВ√2 Для удобства АВ в записи решения опускается до окончательного ответа.
В МРЕТК проведем РТ||BD=√2
MK=BD/2=(1/2)•√2 (средняя линия ∆ АBD)
AH=1/2 AL=(1/4)•√2
CH=(3/4)√2)
Параллелепипед прямоугольный. =>
Из⊿ EHС гипотенуза ЕН=CH/cosα=(3√2)/4cosα.
ЕН и РТ пересекаются в т.О. Перпендикуляр OL отсекает от треугольника ЕНС подобный ему ∆HOL => k=HL:НC=НО:НЕ=1/3=>
Из чертежа видно,что угол QMK равен углу FMP,как вертикальные ,поэтому треугольники равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равна стороне и двум прилегающим к ней углам второго треугольника,то такие треугольники равны между собой
Второе задание
Боковые стороны в равнобедреном треугольнике равны между собой
(39-15):2=12 см
Боковые стороны равны по 12 см
Задание четвёртое
Биссектриса в равнобедреном треугольнике опущенная из вершины на основание одновременно является и медианой и высотой
Биссектриса поделила угол АВС на два равных угла- FBC и FBA и каждый равен по 19 градусов
Как уже было сказано,биссектриса в данном случае является и высотой,а высота опускается на основание перпендикулярно и образует углы по 90 градусов,поэтому угол AFB=90 градусов
А так как биссектриса тут выступает и как медиана,то она основание АС поделила на две равные части
АF=FK=23:2=11,5
Задание 5
Треугольники CDF и DFB равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
По условию CF=FB
DF перпендикуляр на основание и углы CFD и DFB равны между собой и каждый равен 90 градусов
Основание ABCD прямоугольного параллелепипеда ABCDA1B1C1D1
является квадратом. Точка M – середина ребра AB, точка К –
середина ребра AD. Через прямую МК проведена плоскость, образующая с плоскостью ABC угол альфа и пересекающая три боковых ребра параллелепипеда. Площадь полученного сечения параллелепипеда равна S. Найдите отрезок AB.
..........................
ответ: АВ=4Ѕсоѕα/5=0,8•Ѕ•соѕα
Объяснение: (Подробно)
Сделаем рисунок согласно условию. Построение нужного сечения начнём проведением плоскости BDN (на рисунке вложения она ограничена отрезками голубого цвета), образующей угол α с плоскостью основания данного параллелепипеда (NL перпендикулярна BD, CL - её проекция на НС) . (MK//BD; PE//BN; TE//DN, высота HE|| HL– высоте ∆BDN) .
Пересекающиеся МК и ЕН в плоскости МРЕТК соответственно параллельны пересекающимся прямым BD иLN в плоскости BDN=> плоскости параллельны. Данное по условию сечение - плоскость пятиугольника МРЕТК.
Итак, плоскость МРЕТК образует с плоскостью АВС угол α и пересекает три боковых ребра параллелепипеда.
Диагонали основания – AC=BD=АВ:sin45°=АВ√2 Для удобства АВ в записи решения опускается до окончательного ответа.
В МРЕТК проведем РТ||BD=√2
MK=BD/2=(1/2)•√2 (средняя линия ∆ АBD)
AH=1/2 AL=(1/4)•√2
CH=(3/4)√2)
Параллелепипед прямоугольный. =>
Из⊿ EHС гипотенуза ЕН=CH/cosα=(3√2)/4cosα.
ЕН и РТ пересекаются в т.О. Перпендикуляр OL отсекает от треугольника ЕНС подобный ему ∆HOL => k=HL:НC=НО:НЕ=1/3=>
НО=НЕ/3=( √2)/4cosα.
ОЕ=2НО=(√2)/2•соѕα
Ѕ(MPETD)=S(PET)+S(МРТК)
S(PET)=РТ•ЕО/2=0,5•√2•(√2)/2соѕα =1/2соѕα
Ѕ(МРТК)=ОН•(МК+РТ)/2=3/4соѕα
Ѕ=3/4соѕα+1/2соѕα =5/4соѕα
Подставим пропущенное АВ.
Ѕ=АВ•5/4соѕα=>
АВ=4Ѕсоѕα/5=0,8•Ѕ•соѕα
Задание 1
По условию задачи QM=MP
Угол W и угол Р равны между собой
Из чертежа видно,что угол QMK равен углу FMP,как вертикальные ,поэтому треугольники равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равна стороне и двум прилегающим к ней углам второго треугольника,то такие треугольники равны между собой
Второе задание
Боковые стороны в равнобедреном треугольнике равны между собой
(39-15):2=12 см
Боковые стороны равны по 12 см
Задание четвёртое
Биссектриса в равнобедреном треугольнике опущенная из вершины на основание одновременно является и медианой и высотой
Биссектриса поделила угол АВС на два равных угла- FBC и FBA и каждый равен по 19 градусов
Как уже было сказано,биссектриса в данном случае является и высотой,а высота опускается на основание перпендикулярно и образует углы по 90 градусов,поэтому угол AFB=90 градусов
А так как биссектриса тут выступает и как медиана,то она основание АС поделила на две равные части
АF=FK=23:2=11,5
Задание 5
Треугольники CDF и DFB равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
По условию CF=FB
DF перпендикуляр на основание и углы CFD и DFB равны между собой и каждый равен 90 градусов
А сторона DF общая
Из этого следует,что СВ=DB=6 см
АВ-DB=AD
10-6=4 cм
АD равна 4 сантиметра
Объяснение: