Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Докажем равенство тр-ков МСД и КДА. Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата. МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД. У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов. Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов. ответ: 60
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата.
МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД.
У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол
ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов.
Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов.
ответ: 60