В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Дано :
Четырёхугольник ABCD — трапеция.
AM = BM, CN = DN.
BC = 6, AD = 16.
Найти :
x : y = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия трапеции (по определению).
Средняя линия трапеции параллельна её основаниям.Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника. МК — средняя линия ∆АВС.
Средняя линия треугольника равна половине стороны, которой она параллельна.Следовательно, МК = ½ВС = ½*6 = 3.
Рассмотрим ∆ACD.
Аналогично и с KN.
KN = ½AD = ½*16 = 8.
Тогда x : y = 3 : 8.
3 : 8.