Осевое сечение конуса - правильный треугольник со стороной 4 см. Найти объем конуса.
Объем конуса равен одной трети произведения его высоты на площадь основания. Т.к. осевое сечение - правильный треугольник, диаметр основания равен стороне треугольника, а радиус основания равен половине стороны этого треугольника. r=4:2=2 см Площадь основания S=πr² S=π2²=4π см² Высота конуса - высота равностороннего треугольника со стороной 4. По формуле высоты такого треугольника h=a√3):2=4√3):2=2√3 Объем конуса V=1/3·2√3·4π=8π√3:3 cм³ или иначе ≈14,5 см³
Осевое сечение конуса - правильный треугольник со стороной 4 см. Найти объем конуса.
Объем конуса равен одной трети произведения его высоты на площадь основания.
Т.к. осевое сечение - правильный треугольник,
диаметр основания равен стороне треугольника, а радиус основания равен половине стороны этого треугольника.
r=4:2=2 см
Площадь основания
S=πr²
S=π2²=4π см²
Высота конуса - высота равностороннего треугольника со стороной 4.
По формуле высоты такого треугольника
h=a√3):2=4√3):2=2√3
Объем конуса
V=1/3·2√3·4π=8π√3:3 cм³
или иначе ≈14,5 см³
Дано: ΔАВС
АВ=ВА
(О; r) - вписанная окр.
ВМ⊥АС
ВО=13 см
ОК= r = 5 см
Найти: Р ΔАВС
1) Из прямоугольного ΔВОК по теореме Пифагора
ВК² = ВО² - ОК²
ВК² = 13²- 5² =169-25=144
ВК=√144 = 12 см
2) ∆ОВК~∆МВС (подобен), т.к. оба прямоугольные с общим углом ∠МВС.
Соответственные стороны пропорциональны:
ВМ : МС = ВК : ОК
18 : МС = 12 : 5
МС =18 · 5:12 = 7,5 см
АС = 2 · МС = 2·7,5 = 15 см.
3) По теореме Пифагора из ∆ВМС найдем ВС.
ВС² = ВМ² + МС²
ВС² = 18² + 7,5² = 324 + 56,25 = 380,25
ВС=√380,25 = 19,5 см
4) АВ = ВС = 19,5 см
АС = 15 см
Р= АВ+ВС+АС
Р = 2*19,5 + 15 = 54 см
ответ: 54 см