Тут важно знать след. особенность: во всех прямоугольных треугольниках медиана, опущенная на гипотенузу, равна половине гипотенузы. Вычислить площадь треугольника, в данном случае, можно произведением половины высоты на гипотенузу. Осталось найти медиану. Высота и медиана образуют катет и гипотенузу прямоугольного треугольника соответственно. Тогда, зная катет этого треугольника (7см), по теореме Пифагора:
Значит, гипотенуза исходного треугольника равна 2*25=50см. Найдем площадь:
Медиана треугольника делит его на два равновеликих ( равных по площади) треугольника. (Почему - вспомните, что площади треугольников с равным основанием и равной высотой равны) Если провести еще одну медиану ВВ1, то площадь каждой части, получившейся при пересечении медиан треугольника АВС, будет равна 1/6 его площади. А так как треугольник АОС содержит 2 таких части, то его площадь равна 1/3 площади треугольника АВС.
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины, из которой они проведены.
АО=9:3*2=6 см СО=12:3*2=8 см Площадь треугольника равна половине произведения его сторон, умноженной на синус угла между ними.
S АОС=0,5*АО*ОС*sin(30°) S AOC=0,5*6*8*0,5 S AOC=12 см² S АВС=3*S (АОС)=12*3=36 см²
Вычислить площадь треугольника, в данном случае, можно произведением половины высоты на гипотенузу.
Осталось найти медиану.
Высота и медиана образуют катет и гипотенузу прямоугольного треугольника соответственно. Тогда, зная катет этого треугольника (7см), по теореме Пифагора:
Значит, гипотенуза исходного треугольника равна 2*25=50см.
Найдем площадь:
ответ: 600 см в кв.
Если провести еще одну медиану ВВ1, то площадь каждой части, получившейся при пересечении медиан треугольника АВС, будет равна 1/6 его площади.
А так как треугольник АОС содержит 2 таких части, то его площадь равна 1/3 площади треугольника АВС.
Медианы треугольника точкой их пересечения делятся в отношении 2:1, считая от вершины, из которой они проведены.
АО=9:3*2=6 см
СО=12:3*2=8 см
Площадь треугольника равна половине произведения его сторон, умноженной на синус угла между ними.
S АОС=0,5*АО*ОС*sin(30°)
S AOC=0,5*6*8*0,5
S AOC=12 см²
S АВС=3*S (АОС)=12*3=36 см²