Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
— | Чтобы правильно решить данную задачу, нужно быть очень умным и внимательным. | —
• Решение:
— | А теперь, давайте приступим к решению данной задаче. Начнём с 4-го и до 1-го. | —
• Фигура Nō⁴ : У фигуры номер ⁴ нет равных пар треугольников, потому что они не совпадают из за овалов, которые находятся в самом нижнем углу.
• Фигура Nō³ : У фигуры номер ³ нет равных пар треугольников из-за тех же овалов, которые находятся в нижнем углу.
• Фигура Nō² : Многие могут подумать, что правильным ответом будет считаться Фигура номер ², но они глубоко ошибаются, потому что у второй пары треугольника нет маленького квадратика в нижнем углу, который есть у первой пары треугольника, и также, это сто процентов никто не заметил, но я заметила : у второй пары треугольника, где нет квадратика, на букве М есть рядом маленькая и незаметная точечка. Приглядитесь.
• Фигура Nō¹ : А вот фигура номер ¹ может считаться правильным ответом, потому что квадратики, точечки и маленькие полосочки по серединке совпадают.
— | А теперь, когда мы разобрали данную задачу и нашли правильный ответ, мы можем записать его. | —
Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою.
Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою.
Нехай ∠СОВ+∠ВОМ+∠АОМ=286°.
Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної.
Сума суміжних кутів дорівнює 180°.
∠СОВ+∠ВОМ=180°, бо вони суміжні.
∠АОМ+∠АОС=180°, бо вони суміжні.
Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°:
∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180°
∠СОВ+∠ВОМ+∠АОМ+∠АОС=360°
Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить
286°+∠АОС = 360°
∠АОС=360-286
∠АОС=74°.
Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то
∠СОВ+74°=180°
∠СОВ=180°-74°
∠СОВ=106°.
Виходить, що ∠СОВ=∠АОМ=106°.
Відповідь: два кути по 74° та два кути по 106°.
` ` — Здравствуйте, Norfsakilla! ` `
• Объяснение:
— | Чтобы правильно решить данную задачу, нужно быть очень умным и внимательным. | —
• Решение:
— | А теперь, давайте приступим к решению данной задаче. Начнём с 4-го и до 1-го. | —
• Фигура Nō⁴ : У фигуры номер ⁴ нет равных пар треугольников, потому что они не совпадают из за овалов, которые находятся в самом нижнем углу.
• Фигура Nō³ : У фигуры номер ³ нет равных пар треугольников из-за тех же овалов, которые находятся в нижнем углу.
• Фигура Nō² : Многие могут подумать, что правильным ответом будет считаться Фигура номер ², но они глубоко ошибаются, потому что у второй пары треугольника нет маленького квадратика в нижнем углу, который есть у первой пары треугольника, и также, это сто процентов никто не заметил, но я заметила : у второй пары треугольника, где нет квадратика, на букве М есть рядом маленькая и незаметная точечка. Приглядитесь.
• Фигура Nō¹ : А вот фигура номер ¹ может считаться правильным ответом, потому что квадратики, точечки и маленькие полосочки по серединке совпадают.
— | А теперь, когда мы разобрали данную задачу и нашли правильный ответ, мы можем записать его. | —
• ответ: у фигуры Nō¹ пары треугольников равны.
` ` — С уважением, EvaTheQueen! ` `