Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
∠ ВАD = ∠ ВСD = 36°.
∠ АВС = ∠ АDС = 144°.
Пошаговое объяснение:
1. По условию ABCD - параллелограмм. Так как AB = BC, то параллелограмм является ромбом по определению.
2. По свойствам ромба его диагонали взаимно перпендикулярны, тогда ∆ АОD прямоугольный, сумма его острых углов 1 и 2 равна 90°.
3. Пусть ∠ 1 = х°, тогда ∠ 2 = 4х°, получили, что
х + 4х = 90
5х = 90
х = 90 : 5
х = 18
∠ 1 = 18°, ∠ 2 = 18° • 4 = 72°.
4. По свойствам ромба диагонали являются биссектрисами его углов, тогда
∠ ВАD = 2•∠ 1 = 2•18° = 36°.
∠ ВАD = ∠ ВСD = 36°.
5. ∠ АВС = ∠ АDC = 2•72° = 144°.
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.
МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) = √(256 + 144) = √400 = 20