Рисунок через редактор у меня вставить не получается, но... Проводим из центра окружности - точки О к точке B прямую. Треугольники OBC и OAB равны по катету (катет OC = OA = r, также угол OCB = OAB, т.к. радиус, проведённый в точку касания, перпендикулярен касательной, гипотенуза OB - общая). Из равенства треугольников следует, что угол COB = OAB = 60° => угол CBO = ABO = 90° - 60° = 30° => OC = 1/2 CB, т.к. против угла в 30° лежит катет, равный половине гипотенузы, значит, CB = AB = 8 см. Pocba = 4см + 4см + 8см + 8см = 24см.
Окружность вписана в трапецию АВСD
Значит из точек А,И,С,D к окружности проведены касательные.
Касательная перпендикулярна радиусу, проведенному в точки касания
ОК⊥ВС
ОМ⊥СD
OP⊥AD
OT⊥AB
⇒ ОС, ОВ, ОА и ОD - биссектрисы углов трапеции
Отрезки касательных, проведённых из одной точки, равны. (См рис. )
КМ = СМ = 1 см
РD = DM = 4 см
ВК=ВТ=АТ=AP=r
Так как сумма углов, прилежащих к стороне CD равна 180°
А биссектрисы делят угол пополам, то Δ СOD прямоугольный.
∠СOD=90°
ОM^2=CM·MD
OM^2=1·4
OM=2
r=0M=2
BC=2+1=3 cм
AD=2+4=6 cм
АВ=2+2=4 см
S( трапеции)=(BC+AD)·AB/2=(3+6)·4/2=18 cм²