2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.
Объяснение:
1. 3) (неравенство треугольника);
2. Т.к. CD можно рассматривать как секущую к прямым BC и AD, то доказательство параллельности AD и BC сводится к нахождению каких-нибудь особых пар углов, которые при параллельности прямых дают определенное значение. Например, можно сказать, что т.к. угол ADC = 15° + 75° = 90°, а угол BCD равен также 90°, то сумма BCD и ADC равна 180. Эта пара углов называется внутренние односторонние. Доказывается, что если их сумма равна 180° (как в нашем случае), то прямые, которые пересекаются секущей, параллельны. То есть AD║BC.
Дано :
параллелограмм NPKA
<ANK = 45°
<KNP = 65°
Найти:
<А, <К, <Р, <N, <NKA, <NKP = ?
<N = <ANK + <KNP = 45° + 65° = 110°
<N = <K = 110° (св-во параллелограмма - противоположные углы равны)
<А = 180° - <К = 180° - 110° = 70° (свойство параллелограмма - углы, прилежащие к любой стороне, в сумме равны 180°)
<Р = <А = 70° (св-во параллелограмма - противоположные углы равны)
<NKA = <KNP = 65° (н.л. при NP//AK и секущей NK)
<NKP = <K - <NKA = 110° - 65° = 45°
ответ: <А = <Р = 70° ; <К = <N = 110° ; <NKA = 65° ; <NKP = 45°