ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
a^2 + b^2 = c^2
Пусть a < b < c
Если они составляют геом. прогрессию, то их длины удовлетворяют равенствам:
b = a*q
c = a*q^2
Подставляем
a^2 + a^2*q^2 = a^2*q^4
Сокращаем на a^2
1 + q^2 = q^4
q^4 - q^2 - 1 = 0
Биквадратное уравнение
D = 1 + 4 = 5
q1^2 = (1 + V(5))/2
q2^2 = (1 - V(5))/2 < 0 - не подходит.
Получаем
а - любое, например а = 1
b = a*q = кв.корню из ((1 + V(5))/2)
c = a*q^2 = (1 + V(5))/2
Проверяем
a^2 + b^2 = c^2
1 + (1 + V(5))/2 = ((1 + V(5))/2)^2
(3 + V(5)) / 2 = (1 + 2V(5) + 5) / 4 = (6 + 2V(5)) / 4 = (3 + V(5)) / 2
Верно
ответ: знаменатель прогрессии q = кв.корню из ((1 + V(5))/2)
Меньший катет а может быть любым.Напишите в ответе здесь
Даны вершины треугольника А(-2; 1), В(2; 4), С((-2;-2).
1) Векторы АВ = (4; 3), ВС = (-4; -6), АС = (0; -3).
Уравнения (канонические):
АВ: (х + 2)/4 = (у - 1)/3.
ВС: (х - 2)/(-4) = (у - 4)/(-6). Общий вид: 3х -2у + 2 = 0.
АС: (х + 2)/0 = (у - 1)/(-3). Это линия х = -2.
2) Точка М: х(М) = (-2+2-2)/3 = -2/3,
у(М) = (1+4-2)/3 = 1. Точка М((-2/3); 1).
3) Находим уравнение высоты АД из условия А1А2 + В1В2 = 0.
АД: 2х + 3у + С = 0. Подставим координаты точки А:
2*(-2) + 3*1 + С = 0, отсюда С = 4 - 3 = 1.
АД: 2х + 3у + 1 = 0.
Если задано уравнение прямой ВС: Ax + By + C = 0, то расстояние от точки А(Аx, Аy) до прямой ВС можно найти, используя следующую формулу : d = |A·Аx + B·Аy + C| . А(-2; 1).
√(A² + B²) ВС: 3х -2у + 2 = 0.
Подставим данные: d = |3·(-2) + (-2)·1+ 2| =
√(3² + (-2)²)
= |-6 - 2 + 2|/√13 = 6/√13 ≈ 1,664.
4) Так как одна сторона треугольника вертикальна и равна 3, то высота равна разности координат точек по оси Ох, то есть 2 - (-2) = 4.
ответ: S = (1/2)*3*4 = 6.