Недочет в условии: середины двух ПАРАЛЛЕЛЬНЫХ хорд. перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
Мы можем найти сторону которая лежит против угла 30°. Наверное, СВ - гипотенуза, поэтому сторона против угла в 30 ° будет равна половине гипотенузы, т.е 3 сантиметра. Записывается так. угол В =30° следовательно АС = 1/2 СВ АС=3см. Мы можем найти другой катет. По теореме Пифагора Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см. Находим периметр. 5см + 3 см + 6 см = 14см. Находим площадь. Площадь прямоугольного треугольника равна половине его катетов. 1/2аб=1/2 5*3/2=7.5см в квадрате ответ: Площадь 7.5см в квадрате, периметр 12см
перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
АС=3см.
Мы можем найти другой катет. По теореме Пифагора
Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см.
Находим периметр.
5см + 3 см + 6 см = 14см.
Находим площадь.
Площадь прямоугольного треугольника равна половине его катетов.
1/2аб=1/2 5*3/2=7.5см в квадрате
ответ: Площадь 7.5см в квадрате, периметр 12см