Находим угол АОВ с учетом того, что АО и ОВ - биссектрисы углов А и В (по свойству центра вписанной окружности): АОВ = 180-(1/2)А-(1/2)В = 180-((1/2)(А+В)) = 180-((1/2)(180-60) = = 180-90+30 = 120°. Зная 2 стороны и угол, находим сторону АВ треугольника АОВ: АВ =√(6²+10²-2*6*10*cos120) = √36+100-120*(-1/2)) = √196 = 14 см. Зная стороны треугольника АОВ, находим углы А и В (А = 2*ВАО, В =2*АВО) по теореме синусов. sin BAO = sin120*10/14 = 0.866025*10/14 = 0.6185896°. Угол ВАО = arc sin 0.6185896 = 0.6669463 радиан = 38.213211° Угол А = 2* 38.213211 = 76.426421°. sin ВAO = sin120*6/14 = 0.3711537. Угол ВАО = arc sin 0.3711537 = 0.3802512 радиан = 21.786789°. Угол В = 2* 21.786789 = 43.573579°. Зная углы треугольника АВС и одну сторону АВ = 14 см, находим 2 другие по теореме синусов: ВС = 14*sin A /sin C = 14* 0.972069 / 0.866025 = 15.71428571 см. АС = 14*sin В /sin C = 14* 0.6892855 / 0.866025 = 11.14285714 см. Находим площадь треугольника АВС по формуле Герона: S = √(p(p-a)(p-b)(p-c)) = 75.82141 см². Здесь р = (а+в+с)/2 = 20.428571 см. Радиус описанной окружности R = abc / 4S = 8.0829038 см.
1. Найдите диагональ квадрата, если его площадь равна 12.5. Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5 Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52. Площадь прямоугольника: 13*52 = 676 Площадь квадрата: a² = 676; a = √676 = 26 Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30. S = 40*10*sin30° = 400*1/2 = 200 Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3, Площадь меньшего равна 3. Найдите площадь большого. Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27 Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности. π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи), Центральный угол которого равен 90
АОВ = 180-(1/2)А-(1/2)В = 180-((1/2)(А+В)) = 180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону АВ треугольника АОВ:
АВ =√(6²+10²-2*6*10*cos120) = √36+100-120*(-1/2)) = √196 = 14 см.
Зная стороны треугольника АОВ, находим углы А и В (А = 2*ВАО, В =2*АВО) по теореме синусов.
sin BAO = sin120*10/14 = 0.866025*10/14 = 0.6185896°.
Угол ВАО = arc sin 0.6185896 = 0.6669463 радиан = 38.213211°
Угол А = 2* 38.213211 = 76.426421°.
sin ВAO = sin120*6/14 = 0.3711537.
Угол ВАО = arc sin 0.3711537 = 0.3802512 радиан = 21.786789°.
Угол В = 2* 21.786789 = 43.573579°.
Зная углы треугольника АВС и одну сторону АВ = 14 см, находим 2 другие по теореме синусов:
ВС = 14*sin A /sin C = 14* 0.972069 / 0.866025 = 15.71428571 см.
АС = 14*sin В /sin C = 14* 0.6892855 / 0.866025 = 11.14285714 см.
Находим площадь треугольника АВС по формуле Герона:
S = √(p(p-a)(p-b)(p-c)) = 75.82141 см².
Здесь р = (а+в+с)/2 = 20.428571 см.
Радиус описанной окружности R = abc / 4S = 8.0829038 см.
Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5
Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52.
Площадь прямоугольника: 13*52 = 676
Площадь квадрата: a² = 676; a = √676 = 26
Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30.
S = 40*10*sin30° = 400*1/2 = 200
Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3,
Площадь меньшего равна 3. Найдите площадь большого.
Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27
Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности.
π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи),
Центральный угол которого равен 90
Формула площади сектора с центральным углом α
Площадь сектора равна 576