в треугольнике чертим высоту h, дальше решаем: h/sin60=9/sin90 h=9*sin60 sin60=Sqrt[3]/2 h=4,5*Sqrt[3]
дальше рассматриваем второй треугольник (высота делит треугольник на 2 треугольника,первый мы уже рассмотрели): находим угол у основания( 60-первый у основания,ишем второй): неизвестный угол обозначим alpha: 4,5*Sqrt[3]/sin[alpha]=21/sin[90] alpha=21,79
дальше рассматриваем первоначальный треугольник и находим оставшийся третий угол: 180-60-21,79=98,21
в треугольнике чертим высоту h,
дальше решаем:
h/sin60=9/sin90
h=9*sin60 sin60=Sqrt[3]/2
h=4,5*Sqrt[3]
дальше рассматриваем второй треугольник (высота делит треугольник на 2 треугольника,первый мы уже рассмотрели):
находим угол у основания( 60-первый у основания,ишем второй):
неизвестный угол обозначим alpha:
4,5*Sqrt[3]/sin[alpha]=21/sin[90]
alpha=21,79
дальше рассматриваем первоначальный треугольник и находим оставшийся третий угол:
180-60-21,79=98,21
все углы известны,находим основание:
обозначим основание c:
c/sin [98,21]=21/sin[60]
c*sin[60]=21*sin [98,21]
c=(21*sin [98,21])/sin[60]
c=24
осталось найти площадь:
1/2*24*4,5*Sqrt[3]=93,53
Нарисуем трапецию ABCD.(Она будет равнобедренной,т.к. боковые стороны равны.)
Проведем обе высоты.
Получим прямоугольный треугольник ABH(H - точка куда провели высоту) и FCD(F точка куда провели вторую высоту)
За 60 градусов возьмем угол прилегающий к большему основанию т.е угол A
Тогда угол ABH = 30 градусов
Катет лежащий против угла в 30 градусов равен половине гипотенузы => AH = 4
Так как это равнобедренная трапеция AH = H1D = 4
Получается,что большее осонвание равно AH + HH1 + H1D = 4+7+4 = 15
Средняя линия трапеции равна полусумме оснований = (BC + AD) / 2 = (7+15) / 2 = 11