Правильный 8-угольник делится радиусами описанной окружности, проведенными в его вершины на 8 равносторонних треугольников, сумма углов каждого из которых равна 180°. Угол при вершине такого треугольника равен 360° (полный круг), деленное на 8, то есть 45°. Тогда внутренний угол 8- угольника равен сумме углов при основании каждого из 8 равнобедренных треугольника: 180°-45°=135°. ответ: внутренний угол правильного 8 - угольника равен 135°. P.S. А проще - есть формула для определения угла правильного многоугольника: (n-2)*180°/n. В нашем случае 6*180°/8=135°.
1) Точка пересечения медиан в остроугольном, прямоугольном и тупоугольном треугольниках находится внутри треугольника.
2) Точка пересечения высот в остроугольном треугольнике находится внутри треугольника.
Точка пересечения высот в прямоугольном треугольнике находится в вершине прямого угла.
Точка пересечения высот в тупоугольном треугольнике находится вне треугольника.
3) И в остроугольном, и в прямоугольном, и в тупоугольном треугольниках точка пересечения биссектрис лежит внутри треугольника. (Следствие того, что центром вписанной окружности в треугольник является точка пересечения биссектрис).
Тогда внутренний угол 8- угольника равен сумме углов при основании каждого из 8 равнобедренных треугольника: 180°-45°=135°.
ответ: внутренний угол правильного 8 - угольника равен 135°.
P.S. А проще - есть формула для определения угла правильного многоугольника: (n-2)*180°/n. В нашем случае 6*180°/8=135°.
2) Точка пересечения высот в остроугольном треугольнике находится внутри треугольника.
Точка пересечения высот в прямоугольном треугольнике находится в вершине прямого угла.
Точка пересечения высот в тупоугольном треугольнике находится вне треугольника.
3) И в остроугольном, и в прямоугольном, и в тупоугольном треугольниках точка пересечения биссектрис лежит внутри треугольника. (Следствие того, что центром вписанной окружности в треугольник является точка пересечения биссектрис).