Треугольник с заданными сторонами имеет совершенно определённые углы, которые можно вычислить по теореме косинусов. Но можно обойтись и без этой теоремы. Угол в 97 градусов тупой, значит треугольник должен быть тупоугольным. Стоит доказать, что наш треугольник не такой и дело сделано, тем более, что нас не просили вычислить его углы. Наибольший угол в треугольнике лежит напротив наибольшей стороны - это 8 см. Теперь, по теореме Пифагора c²=a²+b²=5²+7²=25+49=74, с=√74≈8.6 см. Прямоугольный треугольник с катетами 5 и 7 см должен иметь гипотенузу в 8.6 см, а у нас сторона всего 8 см. Не хватает длины - не хватает градусов, значит наибольший угол этого треугольника - острый, то есть он меньше 97 градусов. Вот и всё!. ответ: не может.
Угол между плоскостями α и β - искомый двугранный угол. Прямая а - ребро двугранного угла. Проведем АВ⊥α и АС⊥β. АВ = √2, АС = 1 . В плоскости α проведем ВН⊥а. ВН - проекция наклонной АН на плоскость α, значит АН⊥а по теореме о трех перпендикулярах. Если АС⊥β, то СН - проекция наклонной АН на плоскость β. Так как наклонная перпендикулярна прямой а, то и ее проекция будет перпендикулярна прямой а по теореме, обратной теореме о трех перпендикулярах. Итак, СН⊥а, ВН⊥а, значит ∠СНВ - линейный угол двугранного угла - искомый.
Проведем АВ⊥α и АС⊥β. АВ = √2, АС = 1
.
В плоскости α проведем ВН⊥а. ВН - проекция наклонной АН на плоскость α, значит АН⊥а по теореме о трех перпендикулярах.
Если АС⊥β, то СН - проекция наклонной АН на плоскость β. Так как наклонная перпендикулярна прямой а, то и ее проекция будет перпендикулярна прямой а по теореме, обратной теореме о трех перпендикулярах.
Итак, СН⊥а, ВН⊥а, значит ∠СНВ - линейный угол двугранного угла - искомый.
ΔАВН: ∠АВН = 90°, sin∠AHB = AB : AH = √2/2, ⇒
∠AHB= 45°
ΔAHC: ∠ACH = 90°, sin∠AHC = 1/2, ⇒
∠AHC = 30°
∠CHB = ∠AHB + ∠AHC = 45° + 30° = 75°