АВ и АС - радиусы окружности с центром в точке А, ОD и ОЕ - радиусы окружности с центром в точке О, а по построению эти окружности имеют одинаковые радиусы, следовательно, АВ = ОD, АС = ОЕ. Также по построению радиус DE окружности с центром в точке D равен отрезку ВС, т.е. DE = ВС. Получаем АВС =ODE по 3 признаку равенства треугольников, следовательно, DОЕ =ВАС, т.е. построенный МОЕ равен данному А (т.к. по рисунку видно, что DОЕ совпадает с МОЕ, а ВАС совпадает с А). Что и требовалось доказать.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.
АВ и АС - радиусы окружности с центром в точке А, ОD и ОЕ - радиусы окружности с центром в точке О, а по построению эти окружности имеют одинаковые радиусы, следовательно, АВ = ОD, АС = ОЕ. Также по построению радиус DE окружности с центром в точке D равен отрезку ВС, т.е. DE = ВС. Получаем АВС =ODE по 3 признаку равенства треугольников, следовательно, DОЕ =ВАС, т.е. построенный МОЕ равен данному А (т.к. по рисунку видно, что DОЕ совпадает с МОЕ, а ВАС совпадает с А). Что и требовалось доказать.