Сейчас : ) площадь полной поверхности (sполн) равна 36. решение: sполн = 4sграни + 2sоснования. грани в прямой призме с основанием в виде ромба равны. sграни=h*a=3а, где а - сторона ромба. sоснования=2*sтреугольника. sтреугольника=(а*h)/2, так как треугольник с углом 60 град - равносторонний. далее sоснования=2*(a*h)/2=a*h=3а=sграни; sполн = 4sграни + 2sграни = 6sграни = 6*3*а= 18*а. теперь осталось найти а. рассмотрим равносторонний треугольник (половина основания призмы).найдём высоту: h=(2√3)/2; теперь рассмотрим прямоугольный треугольник (половина основания призмы) и найдём а. cos(60град/2)=((2√3)/2)/а, отсюда √3/2=√3/а, а=2. подставляем в формулу sполн = 18*2 =36
-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
-Длина отрезка ОВ равна длине отрезка ОС как радиусы окружности.
ОВ = ОС = 4 см.
-Радиусы ОВ и ОС проведены к точкам касания В и С касательных АВ и АС, тогда радиусы ОВ и ОС перпендикулярны касательным АВ и АС, а тогда треугольники АОС и АОВ прямоугольные.
-Касательные АС и АВ проведены из одной точки А, тогда, по свойству касательных, АВ = АС.
-В прямоугольных треугольниках АОВ и АОС гипотенуза АО общая, катет ОВ = ОС, тогда треугольники АОВ и АОС равны по катету и гипотенузе.
Тогда угол ОАВ = ОАС = ВАС / 2 = 56 / 2 = 280.
ответ:280