1) Знаем, что объём конуса равен трети произведения высоты на площадь основания.
V конуса = 1/3 * H * S основ. = Н/3 * Пи * R^2, где
Н - высота конуса, R - радиус окружности основания.
2) Знаем соотношение высоты Н и радиуса R: Н/R = 3/2, откуда
3) Н=3*R/2;
4) подставим 3) в 1) V=(3*R/2)/3 * Пи * R^2 =(R/2) * Пи * R^2 = Пи*R^3/2; V=Пи*R^3/2;
5) Знаем, что объём V=48*Пи. Подставим значение 4) в 5) :
48*Пи=Пи*R^3/2; Сократим на Пи/2: 48*2=R^3; Откуда R=куб. √96=2*куб. √12;
6) Подставим значение 5) в 3) :
Н=3*R/2=3*(2*куб. √12)/2=3*куб. √12;
7) По теореме Пифагора найдём величину образующей конуса (Обр.) :
Oбр. = √(Н^2+R^2) = √((3*куб. √12)^2+(2*куб. √12)^2)=√(13*(куб. √12)^2)=(куб. √12)*√13;
8) Найдём длину окружности основания (Дл. Окр.) ;
Дл. Окр. =2*Пи*R; Дл. Окр. =2*Пи*(2*куб. √12)=4*Пи*куб. √12;
9) Найдём площадь основания Sосн. =Пи*R^2=Пи*(2*куб. √12)^2=4*Пи*(куб. √12)^2;
10) Найдём площадь боковой поверхности: Sбок. =0,5*Обр. *Дл. Окр. =
Sбок. =0,5*(куб. √12)*√13*4*Пи*кубю√12=2*Пи*√13*(куб. √12)^2;
11) Найдём площадь полной поверхности конуса: Sполн. =Sосн. +Sбок. ;
Sполн. =4*Пи*(куб. √12)^2+2*Пи*√13*(куб. √12)^2=2*Пи*(2+√13)*(куб. √12)^2=
=2*3,14*(2+3,61)*5,241=184,6;
Где-то так…
Желаю здравствовать!
Объяснение:
Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.
1) Знаем, что объём конуса равен трети произведения высоты на площадь основания.
V конуса = 1/3 * H * S основ. = Н/3 * Пи * R^2, где
Н - высота конуса, R - радиус окружности основания.
2) Знаем соотношение высоты Н и радиуса R: Н/R = 3/2, откуда
3) Н=3*R/2;
4) подставим 3) в 1) V=(3*R/2)/3 * Пи * R^2 =(R/2) * Пи * R^2 = Пи*R^3/2; V=Пи*R^3/2;
5) Знаем, что объём V=48*Пи. Подставим значение 4) в 5) :
48*Пи=Пи*R^3/2; Сократим на Пи/2: 48*2=R^3; Откуда R=куб. √96=2*куб. √12;
6) Подставим значение 5) в 3) :
Н=3*R/2=3*(2*куб. √12)/2=3*куб. √12;
7) По теореме Пифагора найдём величину образующей конуса (Обр.) :
Oбр. = √(Н^2+R^2) = √((3*куб. √12)^2+(2*куб. √12)^2)=√(13*(куб. √12)^2)=(куб. √12)*√13;
8) Найдём длину окружности основания (Дл. Окр.) ;
Дл. Окр. =2*Пи*R; Дл. Окр. =2*Пи*(2*куб. √12)=4*Пи*куб. √12;
9) Найдём площадь основания Sосн. =Пи*R^2=Пи*(2*куб. √12)^2=4*Пи*(куб. √12)^2;
10) Найдём площадь боковой поверхности: Sбок. =0,5*Обр. *Дл. Окр. =
Sбок. =0,5*(куб. √12)*√13*4*Пи*кубю√12=2*Пи*√13*(куб. √12)^2;
11) Найдём площадь полной поверхности конуса: Sполн. =Sосн. +Sбок. ;
Sполн. =4*Пи*(куб. √12)^2+2*Пи*√13*(куб. √12)^2=2*Пи*(2+√13)*(куб. √12)^2=
=2*3,14*(2+3,61)*5,241=184,6;
Где-то так…
Желаю здравствовать!
Объяснение:
Находим угол АОВ с учетом того, что АО и
OB - биссектрисы углов А и В (по свойству
центра вписанной окружности):
AOB = 180-(1/2)А-(1/2)B = 180-((V2)(A+B)) =
180-((1/2)(180-60) =
= 180-90+30 = 120°.
Зная 2 стороны и угол, находим сторону AB
треугольника АОВ:
AB =V(6°+102-2*6*10*cos120)
= V36+100-120*(-1/2) = V196 = 14 см.
Зная стороны треугольника АОВ, находим
углы А и В (А = 2*BAO, B =2*АВО) по теореме
Синусов.
sin BAO = sin120*10/14 =
0.866025*10/14 =
0.6185896º.
Угол BAO = arc sin
0.6185896 = 0.6669463 радиан =
38.213211°
Угол А= 2*0.3802512 радиан = 21.786789°.
Угол B = 2*
21.786789=
43.573579º.
Зная углы треугольника ABC и одну сторону
AB = 14 см, находим 2 другие по теореме
Синусов:
BC = 14*sin A/sin C = 14*
0.972069/
0.866025 =
15.71428571 CM.
AC = 14*sin B /sin C = 14*
0.6892855 / 0.866025 =
11.14285714 см.
Находим площадь треугольника АВС по
формуле Герона:
S= V(p(p-a)(p-b)(p-c) =
75.82141 см2.
Здесь р= (а+в+с)/2 =
20.428571 см.
Радиус описанной окружности R = abc / 4S =
8.0829038 CM.