1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Бассейн =1
Первая труба 1бассейн за 21ч
Вторая труба за ?ч
Первая в час = 1:21=1/21часть заполнит
Делим 1 бассейн на время двух труб и вычитаем 1 трубы время в час.
1))
1/ (8 3/4) - 1/21=
1/ ((8•4+3)/4)- 1/21=
1/(35/4)- 1/21= 1•4/35- 1/21=
(4•3)/(35•3)- (1•5)/(21•5)=
12/105- 5/105= 7/105= 1/15 часть заполняет вторая труба
2)) 1: 1/15= 1• 15/1= 15 часов надо 2 трубе
ответ: за 15 часов вторая труба заполнит бассейн
С икс
Х=время второй трубы
21час=время 2 трубы
Всего 8 3/4ч
Бассейн =1
1/Х+1/21=1/ (8 3/4)
1/Х= 1/((8•4+3)/4)- 1/21
1/Х= 1/(35/4)- 1/21
1/Х= 1• 4/35- 1/21
1/Х= (4•3)/(35•3) - (1•5)/(21•5)
1/Х=12/105-5/105
1/Х=7/105=1/15
1/(1/15)=Х
Х=1•15/1
Х=15 часов
ответ: вторая труба заполнит за 15 часов бассейн