Градусная мера дуги РК = 80 это означает, что центральный угол, опирающийся на эту дугу (это угол РОК))) равен 80 градусов, а вписанный угол, опирающийся на эту же дугу (это угол РМК))), равен 80/2 = 40 градусов... т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40 и угол МРК = 100 градусов а про дугу МК можно порассуждать двумя вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов... или по дугам... дуги РК и РМ в сумме 80+80 = 160 градусов дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200
S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
это означает, что центральный угол, опирающийся на эту дугу (это угол РОК)))
равен 80 градусов,
а вписанный угол, опирающийся на эту же дугу (это угол РМК))),
равен 80/2 = 40 градусов...
т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40
и угол МРК = 100 градусов
а про дугу МК можно порассуждать двумя
вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов...
или по дугам...
дуги РК и РМ в сумме 80+80 = 160 градусов
дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.