Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Вектор АВ (-2i:3j; 0k), АВ = 3,6056
Вектор АС (-2i;0j;6k), АС = 6,3246
Вектор АД (0i;3j;8k). АД = 8,544
Модуль вектора d = √ ((х2 - х1 )^2 + (у2 - у1 )^2 + (z2 – z1 )^2).
2) Угол между векторами (АВ ) ⃗ и (АС) ⃗;
АВ-АС 4 4 13 3,606 40 6,325 22,8 cos α = 0,175412
акос α = 1,394472 радиан = 79,89739 градус.
3) Проекция вектора (АD) ⃗ на вектор (АВ) ⃗
Решение:
Пр ba = a · b|b|
Найдем скалярное произведение векторов:
a · b = ax · bx + ay · by + az · bza · b = 0 · (-2) + 3 · 3 + 8 · 0 = 0 + 9 + 0 = 9
Найдем модуль векторов:
|b| = √bx² + by² + bz² = √(-2)² + 3² + 0² =
= √4 + 9 + 0 = √13
Пр ba =9/√13 = 9√13/13 ≈ 2.4961508830135313.