Поскольку при вращении фигуры получается два равных конуса
Тогда площадь поверхности такого тела будет равна площади поверхности одного из этих конусов умноженное на два
Следовательно из того что точка пересечения диагоналей делит их на четыре равных отрезка, то радиус основания конуса равен половине диагонали, т.е 4 см В то время, как и высота равна 4
Тогда R=H Отсюда можно найти L образующую конуса по теореме Пифагора
L=корень из (4²+4²) =4 корней из 2
Следовательно площадь поверхности конуса равна piRL
И равна 4 корней из двух *3,14*4)≈48 корней их двух
Сначало найдём угол D:
Сумма углов треугольника равна 180°
=> ∠D = 180 - (31 + 69) = 80°
Против большего угла лежит большая сторона.
Против меньшего угла лежит меньшая сторона.
∠D - наибольший угол => СЕ - наибольшая сторона.
∠Е - средний угол => CD - средняя сторона.
∠С - наименьший угол => ED - наименьшая сторона.
1) неверно, так как DE < CD (DE - наименьшая, а CD - средняя)
2) неверно, так как CD < CE (CD - средняя, а СЕ - наибольшая)
3) верно (CE - наибольшая, а DE - наименьшая)
4) неверно, так как DE < CE (DE - наименьшая, а СЕ - наибольшая)
ответ: 3)
Дано: Тело вращения АВСD (квадрат)
ВD=AC=8см (диагонали квадрата равны)
Ось вращения АС
Найти S поверхности тела вращения
Поскольку при вращении фигуры получается два равных конуса
Тогда площадь поверхности такого тела будет равна площади поверхности одного из этих конусов умноженное на два
Следовательно из того что точка пересечения диагоналей делит их на четыре равных отрезка, то радиус основания конуса равен половине диагонали, т.е 4 см В то время, как и высота равна 4
Тогда R=H Отсюда можно найти L образующую конуса по теореме Пифагора
L=корень из (4²+4²) =4 корней из 2
Следовательно площадь поверхности конуса равна piRL
И равна 4 корней из двух *3,14*4)≈48 корней их двух
И площадь поверхности тела равна 48*2=96 см²