У трикутнику АВС ∠В = ∠С, АМ – медіана. На сторонах АС і АВ відповідно позначено точки F і D такі, що ∠ FМC = ∠ DMВ. Які відрізки однакової довжини при цьому утворилися?
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Дана параллельная проекция равнобедренной трапеции АВСD на плоскости р. Из основных инвариантных свойств параллельного проецирования имеем: "Проекции взаимно параллельных прямых также взаимно параллельны, а отношение отрезков таких прямых равно отношению их параллельных проекций". Отсюда ясно, что проекцией отрезка, соединяющего середины параллельных оснований исходной трапеции будет отрезок, соединяющий середины проекций этих оснований. Делим отрезки АD и ВС пополам и соединяем полученные середины М и N. Мы знаем, что в равнобедренной трапеции отрезок, соединяющий середины оснований перпендикулярен этим основаниям. А высота из вершины тупого угла трапеции параллельна этому отрезку. Таким образом, проведя прямую из точки В (проекция вершины тупого угла трапеции) параллельно прямой MN, получим искомое изображение высоты из тупого угла на большее основание.
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
- всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP.
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Мы знаем, что в равнобедренной трапеции отрезок, соединяющий середины оснований перпендикулярен этим основаниям. А высота из вершины тупого угла трапеции параллельна этому отрезку. Таким образом, проведя прямую из точки В (проекция вершины тупого угла трапеции) параллельно прямой MN, получим искомое изображение высоты из тупого угла на большее основание.