двивсь : якщо кути при основі рівні то по першій ознаці подібності трикутникі - ці трикутники подібні . Знаємо, що вони рівнобедренні і якщо сторони одного трикутника відносятся як 7:4, то і сторони другого трикутника відносятся як 7:4.
Тепер треба визначити які то сторони:
1 варіант: основа складає 7х, тоді бічні сторони 4х
Р=7х+4х+4х ,
180=15х
х=180:15
х=12
основа 7х=7*12=84(см)
бічні сторони 4х=4*12=48 (см)
2 варіант: основа складає 4х, бічні сторони складають 7х
Во первых, уточним, что прямая р лежит в ОДНОЙ плоскости с треугольником АВС. Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну". Следствие из этой аксиомы: Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного. Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых. Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.
Відповідь:
84 см, 48см, 48 см
або 40 см, 70 см,70 см
Пояснення:
двивсь : якщо кути при основі рівні то по першій ознаці подібності трикутникі - ці трикутники подібні . Знаємо, що вони рівнобедренні і якщо сторони одного трикутника відносятся як 7:4, то і сторони другого трикутника відносятся як 7:4.
Тепер треба визначити які то сторони:
1 варіант: основа складає 7х, тоді бічні сторони 4х
Р=7х+4х+4х ,
180=15х
х=180:15
х=12
основа 7х=7*12=84(см)
бічні сторони 4х=4*12=48 (см)
2 варіант: основа складає 4х, бічні сторони складають 7х
тоді Р=4х+7х+7х
180=18х
х=180:18
х=10
основа 4х=4*10=40(см)
бічні сторони 7х=7*10=70(см)
Во вторых,существует аксиома: "В одной плоскости через любую точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну".
Следствие из этой аксиомы:
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую параллельную прямую. Это следствие доказывается методом от противного.
Предполагается, что прямая (АС или ВС), пересекающая одну из параллельных прямых (АВ) в точке (А или В), НЕ пересекает вторую. Тогда имеем еще одну прямую k, параллельную второй прямой р, проходящую через точку пересечения (А или В), что противоречит аксиоме о параллельных прямых.
Итак, если p параллельна AB, а BC и АС пересекают AB, значит прямые BC и АС (или их продолжения) пересекают и прямую p, т.к. p || AB.