Решение: Площадь треугольника находится по формуле: S=1/2*a*h В равнобедренном прямоугольном треугольнике a=h, поэтому площадь такого треугольника можно вычислить по формуле: S=1/2*a² Сторону (а) треугольника, которая является катетом можно найти из синуса угла. sinα=a/c где с- гипотенуза треугольника В равнобедренном прямоугольном треугольнике два острых угла равны по 45 град. (180град -90град=90град; 90град : 2=45 град) sin45=√2/2 или √2/2=а/14 а=14*√2/2=7√2 S=1/2*(7√2)²=1/2*49*2=98/2=49(cм²) Второй решения: Сторону а в равнобедренном прямоугольном треугольнике можно найти и по теореме Пифагора: с²=а²+а² с²=2а² а²=с²/2 а²=14²/2=196/2=98 S=1/2*a² или S=1/2*98-49(см²)
Если хорошенько разобраться, решается все очень просто)
В основании пирамиды лежит равносторонний тр-к. его высоты, медианы и биссектрисы равны и точкой пересечения делятся в отношении 1/2. т. к бОльшая часть будет являться радиусом описанной окружности а меньшая часть - радиус вписанной окружности. обозначим основание тр-к АВС. точка пересечения высот О. вершина пирамиды - Н, высота АА1. ОН по условию =АА1 =9 ОА1= 1/3 АА1= 9/3=3
рассмотрим тр-к НОА1 НА1(апофема) = корень из (9*9+3*3)= корень из 90
Площадь треугольника находится по формуле:
S=1/2*a*h
В равнобедренном прямоугольном треугольнике a=h, поэтому площадь такого треугольника можно вычислить по формуле:
S=1/2*a²
Сторону (а) треугольника, которая является катетом можно найти из синуса угла.
sinα=a/c где с- гипотенуза треугольника
В равнобедренном прямоугольном треугольнике два острых угла равны по 45 град. (180град -90град=90град; 90град : 2=45 град)
sin45=√2/2 или √2/2=а/14
а=14*√2/2=7√2
S=1/2*(7√2)²=1/2*49*2=98/2=49(cм²)
Второй решения:
Сторону а в равнобедренном прямоугольном треугольнике можно найти и по теореме Пифагора:
с²=а²+а²
с²=2а²
а²=с²/2
а²=14²/2=196/2=98
S=1/2*a² или S=1/2*98-49(см²)
ответ: S=49см²
В основании пирамиды лежит равносторонний тр-к. его высоты, медианы и биссектрисы равны и точкой пересечения делятся в отношении 1/2. т. к бОльшая часть будет являться радиусом описанной окружности а меньшая часть - радиус вписанной окружности.
обозначим основание тр-к АВС. точка пересечения высот О. вершина пирамиды - Н, высота АА1.
ОН по условию =АА1 =9
ОА1= 1/3 АА1= 9/3=3
рассмотрим тр-к НОА1
НА1(апофема) = корень из (9*9+3*3)= корень из 90