Чертёж прилагается. Итак, по этому чертежу: большее основание DC = 32 см. Меньшее AB = 20 см. Меньшая сторона - та, что прилегает к прямым углам трапеции. Отрезок BE перпендикулярен DC и параллелен меньшей стороне трапеции AD, а следовательно, равен ей. AD = BE. То есть, мы получаем прямоугольный треугольник BCE, в котором нам известна длина гипотенузы BC = 15 см. Длину меньшего катета EC находим: DC - AB = 32 - 20 = 12 (см). Тогда, по теореме Пифагора (BE я обозначила как x):
(см). ответ: длина меньшей стороны прямоугольной трапеции ABCD равна 9 см.
Высота основания пирамиды (она же и медиана и биссектриса) равна: ho=a*cos30 = 2*(√3/2) = √3 см. Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А. Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины. Находим высоту H пирамиды: H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см. Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см. Площадь боковой поверхности равна: Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см². Площадь основания So = a²√3/4 = 2²√3/4 = √3. Площадь полной поверхности пирамиды равна: S =Sбок + So = (2+√3) см².
Итак, по этому чертежу: большее основание DC = 32 см. Меньшее AB = 20 см. Меньшая сторона - та, что прилегает к прямым углам трапеции. Отрезок BE перпендикулярен DC и параллелен меньшей стороне трапеции AD, а следовательно, равен ей. AD = BE. То есть, мы получаем прямоугольный треугольник BCE, в котором нам известна длина гипотенузы BC = 15 см. Длину меньшего катета EC находим: DC - AB = 32 - 20 = 12 (см).
Тогда, по теореме Пифагора (BE я обозначила как x):
(см).
ответ: длина меньшей стороны прямоугольной трапеции ABCD равна 9 см.
ho=a*cos30 = 2*(√3/2) = √3 см.
Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А.
Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины.
Находим высоту H пирамиды:
H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см.
Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см.
Площадь боковой поверхности равна:
Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см².
Площадь основания So = a²√3/4 = 2²√3/4 = √3.
Площадь полной поверхности пирамиды равна:
S =Sбок + So = (2+√3) см².