Первый треугольник h -высота v и w - углы треугольника
второй треугольник h1 - высота v1 и w1 - углы треуг.
h=h1 v=v1 w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг. ) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т. к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны) .
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам.)
По катету и гипотинузе: Чертим произвольную прямую. Выбираем точку ( на рисунке она обозначена как точка 1, обозначать ее не надо, я отметила для пояснения) и произвольным раствором циркуля проводим из нее как из центра полуокружность. Тем же раствором циркуля из точки2, которая от 1 находится на расстоянии меньшем, чем 2 радиуса циркуля, -иначе окружности не пересекутся- чертим вторую полуокружность ( на рисунке обе они -синего цвета). По обе стороны прямой эти полуокружности пересеклись. Через эти точки пересечения полуокружностей проведем прямую.Она - перпендикулярна первой прямой. В точке пересечения этого перпендикуляря и прямой ставим букву С. Это - вершина прямого угланужного нам треугольника. На первой прямой ( горизонатальной) откладываем длину известного катета. Ставим точку А. ( или В, если больше нравится). Это - вторая вершинапрямоугольного треугольника. Из точки А раствором циркуля, радиусом, равным данной по условию длине гипотенузы, чертим полуокружность до пересечения с возведенным перпендикуляром ( на рисунке она красного цвета). Это пересечение - вершина острого угла В треугольника, его третья вершина. Имеем треугольник, в котором катет СА начерчен данной в условии длины, гипотенуза АВ - данной в условии длины. А второй катет СВ получился по построению.
h -высота
v и w - углы треугольника
второй треугольник
h1 - высота
v1 и w1 - углы треуг.
h=h1
v=v1
w=w1
Рассмотрим 1 треугольник: Высота делит его на два прямоугольных треугольника, назовем их а и б. рассмотрим треугольник а: нам известен его катет (который является высотой начального треугольника) и угол v (который является общим у треугольника а и начального треуг. ) нам нужно узнать неизвестный угол прямоугольного треугольника а. Нам известен угол v, поэтому неизвестный нам угол равен 90-v. Таким же образом во втором начальном треугольнике высота делит треугольник на два прямоугольных треуг а1 и б1. Находим неизвестный угол он будет равен 90-v1, а т. к. v=v1 то неизвестные нам углы равны. соответственно треугольник а равен треуг а1, по второму признаку равенства треугольников (если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны) .
Таким же образом доказываем что треугольники б и б1 равны.
Из этих двух доказательств следует что гипотенузы треугольников а и а1 равны, и гипотенузы треугольников б и б1 тоже равны, а эти гипотенузы являются сторонами начального треугольника. Третья сторона равна каждого из этих треугольников равна, сумме катетов прямоугольных треугольников а и б (а1 и б1), и соответственно третьи стороны данных треугольников тоже равны, следовательно первый и второй треугольники равны по трем сторонам.)