Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
Часть прямой линии, ограниченная двумя точками, называется отрезком. Точки, ограничивающие отрезок, называются концами отрезка.
Проведём прямую и отметим на ней отрезок с концами A и B:
Отрезок обозначается указанием его концов. Говорят или пишут: отрезок AB (или BA).
Часто, при обозначении отрезков на прямой линии или просто для построения отдельного отрезка, вместо точек, обозначающих концы отрезка, ставят небольшие чёрточки:
Рассмотрим как с обычной линейки можно построить отрезок более длинный, чем сама линейка. Приложим к листу бумаги линейку, отметим точки A и B и какую-нибудь точку C, лежащую между точками A и B:
Затем передвинем линейку вправо так, чтобы её левый конец оказался около точки C, и отметим точку D около правого конца линейки:
И так, точки A, B, C и D лежат на одной прямой. Сначала проведём отрезок AB:
Затем проведём отрезок BD и получим в результате отрезок AD, более длинный, чем линейка:
Четвертая сторона равна обоим диагоналям, AD = AC = BD.
Вот я примерно нарисовал этот 4-угольник.
Треугольник ABC равнобедренный с углами y (гамма).
Треугольник BCD равнобедренный с углами b (бета).
Треугольник ABD равнобедренный с углами a+y (a - альфа).
Треугольник ACD равнобедренный с углами a+b.
Получаем систему
{ a + (a + y) + (a + y) = 3a + 2y = 180 (ABD)
{ a + (a + b) + (a + b) = 3a + 2b = 180 (ACD)
{ (y + (a+b)) + b + b = a + y + 3b = 180 (BCD)
{ ((a+y) + b) + y + y = a + b + 3y = 180 (ABC)
Из 1 уравнения вычитаем 2 уравнение
2y - 2b = 0
b = y
Подставляем
{ 3a + 2b = 180
{ a + 4b = 180
Из 1 уравнения вычитаем 2 уравнение
2a - 2b = 0
a = b
То есть все три угла равны друг другу
a = b = y
3a + 2a = 5a = 180
a = b = y = 180/5 = 36 градусов.
Самый большой угол
y + (a+b) = 3a = 3*36 = 108 градусов.
Часть прямой линии, ограниченная двумя точками, называется отрезком. Точки, ограничивающие отрезок, называются концами отрезка.
Проведём прямую и отметим на ней отрезок с концами A и B:
Отрезок обозначается указанием его концов. Говорят или пишут: отрезок AB (или BA).
Часто, при обозначении отрезков на прямой линии или просто для построения отдельного отрезка, вместо точек, обозначающих концы отрезка, ставят небольшие чёрточки:
Рассмотрим как с обычной линейки можно построить отрезок более длинный, чем сама линейка. Приложим к листу бумаги линейку, отметим точки A и B и какую-нибудь точку C, лежащую между точками A и B:
Затем передвинем линейку вправо так, чтобы её левый конец оказался около точки C, и отметим точку D около правого конца линейки:
И так, точки A, B, C и D лежат на одной прямой. Сначала проведём отрезок AB:
Затем проведём отрезок BD и получим в результате отрезок AD, более длинный, чем линейка: