у зображенні куба за площину проекцій взято площину АВСD, а проектуючоою прямою є пряма АА1. Устоновіть відповідність між геометричними фігурами та їхніми паралельними проекціями
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.
ΔАВС - прямоугольный (∠С = 90°).
СН - высота, СН = 4 см.
НВ - АН = 6 (см).
Найти :S(ΔАВС) = ?
Решение :Пусть НВ = х, а АН = у. Тогда х - у = 6 (см).
В прямоугольном треугольника квадрат высоты, проведённый к гипотенузе, равен произведению отрезков на которые он поделил эту гипотенузу.Следовательно СН² = НВ*АН ⇒ 4² = ху ⇒ ху = 16.
Из формулы выведем х :
х - у = 6 (см) ⇒ х = 6 (см) + у.
И подставим её в выше сказанную формулу :
ху = 16
(6 + у)*у = 16
Решаем полученное уравнение :
у² + 6у - 16 = 0
а = 1, b = 6, с = -16.
D = b² - 4ac = 6² - 4*1*(-16) = 36 + 64 = 100
√D = √100 = 10.
y₂ - не удовлетворяет условию задачи, так как длины отрезков не могут быть выражены отрицательными числами. Следовательно, у = 2 (см).
Тогда х = 6 (см) + 2 (см) = 8 (см).
Площадь треугольника равна половине произведения его стороны и высоты, опущенной на эту сторону.Отсюда S(ΔАВС) = 0,5*АВ*СН = 0,5*(х + у)*4 (см) = 2 (см)*(8 см + 2 см) = 2 (см)*10 (см) = 20 (см²).
ответ :20 см².
Обозначим скрещивающиеся прямые АВ и СD. Отметим на прямой АВ точку О.
1. Через прямую и не лежащую на ней точку можно провести плоскость, и притом только одну. Проведем эту плоскость через точку О и прямую СD.
2. Соединим центр СD с точкой О. От концов СD проведем отрезки, параллельные и равные первой прямой. Обозначим их концы С₁ и D₁ соединим.
Мы получили две пересекающиеся прямые АВ и С₁D₁, через которые можно провести плоскость, и притом только одну. Проведенная таким образом плоскость параллельна прямой СD.