Ученик перемещает брусок массой 1,2 кг по наклонной плоскости длиной 8 дм на высоту 20 см. При этом, ученик прикладывает силу 5 Н параллельно наклонной плоскости. Чему равно КПД? ( ДАНО, СИ, РЕШЕНИЕ, ОТВЕТ)
Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Исходя из этого:
1) |AB+BC|=|AC|, то есть |AB+BC|= а.
2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3.
|AB+AC|=а*√3.
3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1.
|AB+CB|=а*√3.
4) |ВА-ВC|=|CA|=а.
5) |АВ-АC|=|CВ|=а.
пусть середина стороны АВ т. К
пересечением пл. (альфа) и пл. треугольника (АВС) является прямая k
прямая k параллельна стороне ВС
в противном случае, она должна пересечь прямую(ВС)
НО точка пересечения должна принадлежать также пл. (альфа)
а это НЕВОЗМОЖНО -
пл. (альфа) и ВС не имеют точек пересечения - по условию они параллельны
значит прямая k ПАРАЛЛЕЛЬНА ВС
прямая k является секущей сторон АВ и АС и делит их на пропорциональные отрезки
отсюда следует , что прямая k и плоскость альфа проходит также через середину стороны АС.
отрезок прямой k (между сторонами АВ и АС)- это средняя линия треугольника АВС